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Oxygen-Vacancy Ordering in the YBa2Cu 3 0  z 
Basal Plane Studied by the Cluster Variation Method 
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The cluster variation method is used to calculate a phase diagram for a two- 
dimensional Ising model representing the Cu20 plane of the high-T,, supercon- 
ductor YBazCu30 ~. Both first (V1) and second-neighbor (V2) interactions are 
considered, with V2/Vt = _1. At high temperatures, the transition from the 
disordered (tetragonal) to the ordered (orthorhombic) phase is second-order. A 
tricritical point is found below which phase separation occurs. Fractional site 
occupancy and second-neighbor pair correlations are calculated as a function of 
temperature. The relevance of the model to the thermodynamics of ordering in 
the high-T c compound is discussed. 

KEY WORDS:  Two-dimensional Ising model; cluster variation method; 
superconductors. 

The tetragonal (P4/mmm) to orthorhombic (Pmmm) phase transition 
which occurs in the superconducting compound YBazCu30z appears to be 
caused by a rearrangement of oxygen atoms on the available lattice sites in 
the Cu20 basal plane31) This ordering process can thus be mapped onto a 
two-dimensional Ising model with a rather peculiar set of effective pair 
interactions between oxygen sites. (2'3) We consider first-neighbor inter- 
actions (V 1) and second-neighbor interactions: V2 denoting those mediated 
by the Cu atoms and V3 denoting those that are not. 

The interaction scheme proposed here is described in Fig. la, which 
shows the arrangement of oxygen (�9 and vacant ([]) sites for the 

t Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, 
California 94720. 

2 Department of Physics, University of California Berkeley, California 94720. 
3 Department of Materials Science and Mineral Engineering, University of California, 

Berkeley, California 94720. 

1245 

0022-4715/88/0300-1245506.00/0 �9 1988 Plenum Publishing Corporation 



1246 Berera, Wil le,  and de Fontaine 

�9 

�9 

~ 
I V1 ,'" 

�9 

I 

~ SO S 

[ ~ m  O 
/ 

V 1 ," V2 

�9 

�9 

ss'. ( 
s S 

�9 

(a) (b) 
Fig. 1. The Cu20 basal model. (a) (0) Cu atoms, (�9 oxygen, and ([]) vacant sites. 
(b) CVM motif. Translation of this motif on the structure shown in (a) gives rise to four types 
of clusters: c~ and /~ five-point centered squares (heavy outline) and two four-point squares 
(heavy dashed outlines), one centered on Cu atoms, the other not. Pair interactions 
V1, V2, V3 are indicated. 

perfectly ordered orthorhombic phase. Small, filled circles represent Cu 
atoms. In such an arrangement, one square sublattice (c~) is completely 
occupied by �9 symbols, the other (/~) by [] symbols. This arrangement 
produces long, parallel O - C u - O  chains, believed to be responsible for the 
superconducting properties of YBa2 Cu 30  z. 

It was shown elsewhere by ground-state analysis (3) that, for the 
interaction set V1, V2, V3, other ordered arrangements in addition to that 
depicted in Fig. 1 are possible. In particular, a period doubling structure 
was predicted (2'3) which was also discovered by high-resolution trans- 
mission electron microscopy and diffraction. (4) 

Since the superconducting transition depends critically on the state of 
order in the CuO2 basal plane, m it is essential to calculate phase diagrams 
for various choices of the ratios V2/V1 and V3/V1. In this paper we 
examine only the c a s e  V2 = V3 ~ -iV2 1, V1 > 0, the convention adopted 
being that a positive interaction parameter favors unlike (antiferro- 
magnetic) coupling. The case 1/2 r V3 is currently under study. The chosen 
values were selected because (a) they guaranteed the structure of Fig. 1 as a 
stable ground state at stoichiometry and (b) other statistical mechanical 
calculations, performed on the very same model, were available to check 
the validity of the computational method used here, namely the cluster 
variation method (CVM). (5) Oxygen-vacancy long-range ordering has been 
studied recently by a quasichemical approximation, (6'7) but only with 
nearest neighbor interactions and short-range correlations. 
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The basic motif for the CVM calculation was chosen to be the figure 
consisting of four small squares shown in Fig. lb. Translation of this motif 
on the Cu20 basal plane structure yields four types of clusters, two five- 
point (heavy outlines) and two four-point clusters (heavy dashed lines), 
one containing Cu, the other not. The same types of clusters were used 
previously in another context, ~8"9) demonstrating that the CVM in the four- 
point/five-point cluster approximation gave a critical temperature at zero 
field for the nearest neighbor Ising model only 4% higher than the exact 
Onsager solution. A simpler CVM approximation involving only the four- 
point cluster was recently proposed by Bell, ~1~ but no phase diagram was 
reported. The choice of the five- and four-point cluster combination was 
suggested to us by R. Kikuchi; ~12) it was further justified by general 
theoretical arguments recently described in detail by FinelJ 9) The CVM 
entropy formula was derived by J. Kulik ~11) and by R. Kikuchi ~12) and can 
be found in Finel's doctoral dissertation. ~9) 

The CVM-calculated phase diagram, symmetric about the oxygen con- 
centration Co = �89 is shown in Fig. 2. At tow concentrations and high tem- 
peratures the two-dimensional disordered phase 4mm of square symmetry 
is calculated to be the stable one. It corresponds to the three-dimensional 
tetragonal phase P4/mmm. A line of second-order transitions (heavy 
dashed line) separates the disordered phase region from that of the ordered 
phase mm (in our previous publication, the full international symbol p2mm 
was used). This phase of rectangular symmetry corresponds to the three- 
dimensional orthorhombic phase Pmmm, which is the superconducting 
one. The upper ordering critical point at stoichiometry Co = 0.5 lies at a 
reduced temperature kTo/V~=4.03, whereas high-temperature series 
expansions ~13) give the value kTo/V 1 = 3.80. 

The line of second-order transitions ends at a tricritical point (t), 
which has coordinates kT,/V~ = 1.41, Co--0.19, and #=3.94, where the 
field variable /t represents a difference of chemical potentials / to-/ tD. 
These values are to be compared to those obtained from renormalization 
group techniques by Rikvold et al. (14) kTt/V1 = 1.205 _ 0.003, Co ~ 0.30, 
and/t /V 1 = 3.965 + 0.001, and by Claro and Kumar, (15) kT, /V  1 = 1.28 and 
Co g0.31, in resonable agreement with Monte Carlo results. (16) An "inter- 
face method" calculation by Slotte (17) gives, for the tricritical temperature, 
kTt/V~ ~- -2.27V2 at/t/V~ = 4. Finally, it was pointed out by Huse (18) that 
the tricritical point can be obtained exactly as a special case of Baxter's 
solution of the hard-hexagon model. The tricritical temperature in units of 
V2 is kT, = 0.55802. 

Detailed calculations of phase boundary lines in the immediate vicinity 
of the tricritical point indicate that properties derived by Allen and 
Cahn (19) on the basis of the Landau theory are well obeyed here: the dis- 
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ordered phase boundary joins the line of second-order transitions with no 
change in slope, unlike the case for the ordered phase boundary at point t. 
The fine dashed line is the metastable extension of the line of second-order 
transitions and represents an ordering spinodal, {2~ i.e., a line below which 
the disordered phase becomes marginally unstable to small-amplitude 
ordering fluctuations. The fine, dot-dash curve is the locus of marginal 
instability for phase separation on the partially filled oxygen sublattice. In 
terms of the stability analysis presented earlier, ~2) the fine, dashed curve is 
the stability limit for two ( O O )  ordering waves operating, in phase 
opposition, on the two square sublattices of oxygen sites, and the dot-dash 
curve is the stability limit for a single ( O O )  wave acting on the partially 
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Fig. 2. The CVM phase diagram calculated for V1 > 0, V 2 = V3 = - �89  Concentration (Co) 
is that of the basal plane such that z = 2Co + 6. Second-order transitions are indicated by 
dashed lines, miscibility gap (phase separation) by full lines. Tricritical point is at point 
marked T. Thin dashed line is metastahle extension of line of second-order transitions, the 
dot-dash curve is the line of marginal instability for phase separation on the partially filled 
oxygen sublattice. Tetragonal and orthorhombic phase regions are designated by symbols 
4mm and ram, respectively. 
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filled sublattice in the ordered phase. The two-phase region (4mm + mm) 
rapidly spreads out as the temperature is lowered, so that, at absolute zero, 
the solubility of �9 in the disordered phase and [] in the ordered are nil. 

These tangency rules and spinodals are mean-field features and are 
therefore not strictly valid from an equilibrium statistical mechnical 
standpoint. In practice, however, the spinodal concept is a very useful one 
as it provides simple interpretations of phenomena observed under the 
constraint of slow kinetics at low temperatures. I n  two dimensions, 
tricritical points are expected to have nonclassical exponents, ~21) however, 
so that, in fact, the two-phase coexistence curve at t should be very flat, as 
calculated by renormalization group methods, (14'15) and not pointed, as 
shown in Fig. 2. 

The CVM is particularly well suited to the determination of long- and 
short-range order calculated by means of point, pair, multisite correlation 
functions. In the present case, 25 independent cluster correlation functions 
can be evaluated as a function of concentration and temperature. Here we 
consider only point and second-neighbor pair correlations. Point 
correlations give directly the fractional site occupancies x~, X~o, i.e., the 
probability that a site on the oxygen-rich (a) and oxygen-poor (fl) simple 
square lattices is occupied by an oxygen atom. The appropriate second- 
neighbor pair correlations give the probability x~ of finding an O-O pair 
(actually an O-Cu-O triplet) on the e sublattice. Thus, Xo is a measure of 
long-range order, x2 of short-range order. 

Figure 3 shows the variation with temperature of x~ and X~o for fixed 
overall concentation Co = 0.25. Under the usual assumption that oxygen 
vacancies are found exclusively in the basal plane, the planar concentration 
Co is related to the overall oxygen stoichiometry z by the relation 
z = 6 + 2 C o .  A first bifurcation occurs at the second-order transition 
(around reduced temperature 1.83). Additional bifurcations occur (around 
1.38) at the first-order transition. Below that temperature, the oxygen-rich 
sublattice (e) "phase separates" so that, at equilibrium, the xo plots must 
follow the heavy lines in Fig. 3, indicating site occupancy of the e and fl 
sublattices in the ordered (ram) phase. Metastable extensions of these lines 
meet at the tricritical point. The heavy, dashed line represents site 
occupancy in the disordered phase (4mm) in equilibrium with the ordered 
phase. 

The diagram of Fig. 3 is rather more complicated than those obtained 
by Jorgensen et al.~l) from neutron diffraction experiments on YBa2 Cu3 Oz. 
The first-order transition predicted from the present model may occur at a 
temperature too low to be observed experimentally, however. Hence, the 
metastable extensions of the first bifurcation (fine lines) may be more 
relevant to the experimental findings. Furthermore, the experiments were 
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carried out at constant oxygen partial pressure, not constant oxygen 
concentration, as was the case for the calculated site occupancies. 

The essential role played by O-Cu-O chains along the orthorhombic 
b axis of YBa2Cu3Oz has been mentioned abundantly in the recent 
literature on superconductivity. It is therefore of interest to determine what 
the present model can predict concerning short-range pair correlations 
along these chains. For that purpose, we plot in Fig. 4 the fractional 
second-neighbor pair occupancy, or pair probability x~ in the oxygen-rich 
sublattice, as a function of temperature, for two fixed average oxygen con- 
centrations Co =0.5 and 0.33. It is seen that x~ increases as temperature 
decreases, as expected, until the ordering critical temperature To(co) is 
reached. The pair concentration then rises rapidly, with sharp change of 
slope, but then exhibits a marked inflection located in the vicinity of the 
tricritical temperature. That dx~/dT goes through a minimum is undoub- 
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Fig. 3. Oxygen site occupation as function of reduced temperature for fixed average concen- 
tration c o = 0.25. Thin lines are metastable extensions. Dashed curve gives site occupancy in 
the disordered phase in equilibrium with the ordered one. 
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tedly due to the fact that the c~ sublattice itself can be regarded as an "open 
system" whose concentration x~ is steadily increasing while oxygen pair 
rearrangement is proceeding independently. Both processes contribute to 
the increase of x~,, but at different rates. Note, that, in Fig. 4, the 
probabilities x~ below the first-order phase separation temperature are 
those of the ordered phase metastable extension. 

It is tempting to speculate that such nonmonotonic variation of the 
slope of the x~ versus T curves is related to the steplike behavior of the 
superconducting transition temperature as a function of overall oxygen 
content, as reported by Cava et  aL (22) These authors indeed attribute their 
intriguing results to long- or short-range ordering of oxygen vacancies, 
although more complicated ordering processes than the simple ones 
investigated here may be occurring in practice. This matter is currently 
being studied. 
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Fig. 4. Second-neighbor oxygen-oxygen pair probabilities as a function of reduced tem- 
perature for the two indicated oxygen concentrations. Sharp discontinuities in slope occur at 
second-order transition. 
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Finally, let us consider the observation that the tetragonal to ortho- 
rhombic transition appears to occur at oxygen content z ,,~ 6.5 regardless of 
the equilibrium oxygen partial pressure. ~ It may therefore be concluded 
that the second-order transition line is very steep in the temperature range 
of interest. This is seen to be the case in the phase diagram of Fig. 1, where, 
in fact, the transition line has its steepest slope at about Co = 0.3, which 
comes out to z = 6.6 for the overall oxygen, in agreement with experimental 
findings. The line of second-order transitions is even steeper in the Monte 
Carlo (16) and renormalization group (is) phase diagrams: there the 
transition line is almost vertical just above the tricritical point and is 
located near Co = 0.31 ( z~  6.62), this value being largely insensitive to the 
ratio V2/V1 with V1 > 0, V2 < 0. 

In conclusion, it appears that the present model can describe, at least 
qualitatively, some of the important thermodynamic features of the com- 
pound YBa2Cu3Oz. Better agreement is expected for more realistic models 
featuring other choices of values for V1, V2, and I13. 
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